Search results for "[delta] recycling"

showing 10 items of 66 documents

Genetic determinants of seed protein plasticity in response to the environment in Medicago truncatula

2021

As the frequency of extreme environmental events is expected to increase with climate change, identifying candidate genes for stabilizing the protein composition of legume seeds or optimizing this in a given environment is increasingly important. To elucidate the genetic determinants of seed protein plasticity, major seed proteins from 200 ecotypes of Medicago truncatula grown in four contrasting environments were quantified after one-dimensional electrophoresis. The plasticity index of these proteins was recorded for each genotype as the slope of Finlay and Wilkinson's regression and then used for genome-wide association studies (GWASs), enabling the identification of candidate genes for d…

0106 biological sciences0301 basic medicineCandidate geneGenotypelegumesMutantVitamin UGenome-wide association studyPlant ScienceBiologymethionine recycling01 natural sciences[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics03 medical and health scienceschemistry.chemical_compoundMethionineStress PhysiologicalMedicago truncatulaGeneticsStorage protein[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyGenome-wide association studies (GWAS)GenePlant Proteins2. Zero hungerchemistry.chemical_classificationGeneticsMethionineSeed Storage Proteinsfood and beveragesGlobulinsCell Biologybiology.organism_classificationMedicago truncatulaMetabolic pathwayPhenotype030104 developmental biologychemistrystorage proteins13. Climate actionplasticityMutationSeedsseedGenome-Wide Association Study010606 plant biology & botany
researchProduct

Energy demand reduction of aluminum alloys recycling through friction stir extrusion processes implementation

2019

Abstract Aluminum alloys are characterized by high-energy demands for primary production. Recycling is a well-documented strategy to lower the environmental impact of light alloys production. Despite that, conventional recycling processes are still energy-intensive with a low energy efficiency. Also, permanent material losses occur during remelting because of oxidation. Recently, several solid-state recycling approaches have been analyzed; in fact, by avoiding the remelting step both energy and material can be saved and, therefore, the embodied energy of secondary production can be substantially reduced. In this paper, the solid-state approach Friction Stir Extrusion (FSE) is analyzed for a…

0209 industrial biotechnologyEnergy demandMaterials scienceAluminum alloyPrimary energyComparative analysiMetallurgychemistry.chemical_element02 engineering and technologyFSEIndustrial and Manufacturing EngineeringSolid state recycling020303 mechanical engineering & transports020901 industrial engineering & automationLow energy0203 mechanical engineeringchemistryArtificial IntelligenceAluminiumExtrusionReduction (mathematics)Embodied energySettore ING-IND/16 - Tecnologie E Sistemi Di Lavorazione
researchProduct

Friction stir extrusion to recycle aluminum alloys scraps: Energy efficiency characterization

2019

Abstract Solid state recycling refers to a group of processes allowing direct recycling of metals scraps into semi-finished product. Their main advantage lies in avoiding the molten state of the material which badly affects the environmental performance of the conventional (remelting based) recycling routes. It is expected that such process category would lower the environmental performance of metals recycling. In this paper, the friction stir extrusion process for aluminum alloy AA 2050 wire production is analyzed under the primary energy demand perspective. The process electrical energy demand is quantified with varying process parameters. An empirical modelling approach was applied and a…

0209 industrial biotechnologyMaterials sciencePrimary energyAluminium alloyStrategy and ManagementAlloySustainable manufacturingchemistry.chemical_element02 engineering and technologyManagement Science and Operations Researchengineering.materialIndustrial and Manufacturing Engineering020901 industrial engineering & automationAluminiumSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazionePressingWire drawingElectric potential energyMetallurgy021001 nanoscience & nanotechnologySECFriction stir extrusionchemistryengineeringExtrusion0210 nano-technologySolid State recyclingEfficient energy use
researchProduct

Regulation of Dendritic Spine Morphology in Hippocampal Neurons by Copine-6.

2015

Dendritic spines compartmentalize information in the brain, and their morphological characteristics are thought to underly synaptic plasticity. Here we identify copine-6 as a novel modulator of dendritic spine morphology. We found that brain-derived neurotrophic factor (BDNF) - a molecule essential for long-term potentiation of synaptic strength - upregulated and recruited copine-6 to dendritic spines in hippocampal neurons. Overexpression of copine-6 increased mushroom spine number and decreased filopodia number, while copine-6 knockdown had the opposite effect and dramatically increased the number of filopodia, which lacked PSD95. Functionally, manipulation of post-synaptic copine-6 level…

0301 basic medicineDendritic spineVesicular Inhibitory Amino Acid Transport Proteinsdrug effects [Synapses]Tropomyosin receptor kinase BHippocampal formationgenetics [Carrier Proteins]pharmacology [Brain-Derived Neurotrophic Factor]Hippocampusmetabolism [Vesicular Inhibitory Amino Acid Transport Proteins]Mtap2 protein ratMice0302 clinical medicineNeurotrophic factorsdrug effects [Synaptic Vesicles]genetics [Nerve Tissue Proteins]Cells Culturedultrastructure [Neurons]NeuronsChemistryLong-term potentiationSynaptic Potentialsphysiology [Neurons]physiology [Dendritic Spines]Cell biologyultrastructure [Dendritic Spines]metabolism [Receptor trkB]Synaptic VesiclesFilopodiaultrastructure [Synaptosomes]Disks Large Homolog 4 ProteinMicrotubule-Associated ProteinsCognitive NeuroscienceDendritic Spinesmetabolism [Disks Large Homolog 4 Protein]Nerve Tissue Proteinsgenetics [Receptor trkB]03 medical and health sciencesCellular and Molecular NeuroscienceOrgan Culture Techniquesphysiology [Synaptic Vesicles]metabolism [Vesicular Glutamate Transport Protein 1]TrkB protein ratdrug effects [Synaptic Potentials]Synaptic vesicle recyclingAnimalsHumansReceptor trkBddc:610metabolism [Synaptosomes]metabolism [Nerve Tissue Proteins]Viaat protein ratBrain-Derived Neurotrophic Factormetabolism [Microtubule-Associated Proteins]Rats030104 developmental biologygenetics [Synaptic Potentials]nervous systemcytology [Hippocampus]Synaptic plasticityultrastructure [Synapses]SynapsesVesicular Glutamate Transport Protein 1CPNE6 protein ratphysiology [Synapses]Carrier Proteins030217 neurology & neurosurgerymetabolism [Carrier Proteins]SynaptosomesCerebral cortex (New York, N.Y. : 1991)
researchProduct

Bitumen stabilized ballast: a potential solution for railway track-bed

2016

Railway ballast degradation under dynamic loads progressively leads to loss of mechanical performance and geometry of the track, so that maintenance interventions are frequently needed. In order to system- atically avoid this issue, recently solutions have been proposed to reinforce track-bed by using polyur- ethane and/or resins as well as asphalt layers among others. Nonetheless, their main limitations are related to the high initial cost and low productivity. To cope with these limitations, in this study, bitumen stabilized ballast (BSB) is proposed as a new solu- tion for ballast stabilization. This method aims at improving durability and reducing settlement by mod- ifying both stiffnes…

BallastEngineering0211 other engineering and technologiesCompaction02 engineering and technologyTrack (rail transport)021105 building & constructionBallast recyclingmedicineSettore ICAR/04 - Strade Ferrovie Ed AeroportiGeneral Materials ScienceGeotechnical engineering021101 geological & geomatics engineeringCivil and Structural EngineeringBitumen stabilized ballast Railway trackbed maintenance Ballast stabilization Ballast recyclingBallast stabilizationbusiness.industrySettlement (structural)StiffnessBuilding and ConstructionStructural engineeringDissipationDurabilityBitumen stabilized ballastAsphaltmedicine.symptombusinessRailway trackbed maintenance
researchProduct

Experimental Investigation on Water Loss and Stiffness of CBTM Using Different RA Sources

2021

Cold recycling of reclaimed asphalt (RA) is a promising technique to build or to maintain roads, combining performance and environmental advantages. Although this technique has been extensively used worldwide, there is no unique and internationally-shared method to characterize cold recycled mixtures. The previous work of the RILEM TC 237-SIB TG6 successfully attempted to characterize different RA sources with both traditional parameters (gradation, bitumen content and geometrical properties) and non-conventional properties (fragmentation and strength testing). The current RILEM TC 264-RAP TG1 mainly focuses on the influence of different RA sources on physical and mechanical characteristics…

CementCold recyclingCuring (food preservation)Materials scienceCompactionStiffnessWater lossFoamed bitumenAsphaltUltimate tensile strengthmedicineStrength testingGradationStrengthmedicine.symptomComposite materialEngineering sciences. TechnologyReclaimed asphalt
researchProduct

The Sustainability of Reclaimed Asphalt as a Resource for Road Pavement Management through a Circular Economic Model

2019

The transition of the road engineering industry to a circular way of doing business requires more efficient and sustainable resources, energy, and waste management. The rates in which reclaimed asphalt is being recycled or reused in the asphalt mixture production process constitutes a crucial parameter in this transition. This paper aims at establishing a further step towards the combined circularity and sustainability of asphalt pavements, by introducing a framework for quantifying their Material Circularity Index. The framework is based on the methodology proposed by the Ellen MacArthur Foundation and accordingly tailored for the context of asphalt pavements. This study, thus, attempts to…

Circular economy020209 energyGeography Planning and DevelopmentTJ807-830Context (language use)02 engineering and technology010501 environmental sciencesManagement Monitoring Policy and LawTD194-195asphalt recycling01 natural sciencesCivil engineeringRenewable energy sources12. Responsible consumptionResource (project management)11. Sustainabilityasphalt pavements0202 electrical engineering electronic engineering information engineeringSettore ICAR/04 - Strade Ferrovie Ed AeroportiGE1-3500105 earth and related environmental sciencesEnvironmental effects of industries and plantsreclaimed asphaltRenewable Energy Sustainability and the Environmentasphalt pavementCircular economyPavement managementsustainabilityEnvironmental sciencesBase course13. Climate actionAsphaltSustainabilitymaterial circularity indexEnvironmental scienceEconomic modelSustainability
researchProduct

SyRAF - Synthesised Results and Applicable Findings of CEDR Call 2017 New Materials

2022

Cold Recycling MixturesRoad pavementLife Cycle Assessment (LCA)Sustaianbility
researchProduct

Strategies for waste recycling : the mechanical performance of concrete based on limestone and plastic waste

2022

Recycling is among the best management strategies to avoid dispersion of several types of wastes in the environment. Research in recycling strategies is gaining increased importance in view of Circular Economy principles. The exploitation of waste, or byproducts, as alternative aggregate in concrete, results in a reduction in the exploitation of scarce natural resources. On the other hand, a productive use of waste leads to a reduction in the landfilling of waste material through the transformation of waste into a resource. In this frame of reference, the paper discusses how to use concrete as a container of waste focusing on the waste produced in limestone quarries and taking the challenge…

Concrete -- RecyclingEnvironmental effects of industries and plantsConcrete -- AdditivesAggregates (Building materials) -- RecyclingRenewable Energy Sustainability and the EnvironmentGeography Planning and DevelopmentTJ807-830Building and ConstructionManagement Monitoring Policy and Lawconcrete; waste recycling; plastic; limestone; sustainability; mechanical performancesustainabilityTD194-195Construction industry -- Waste disposalConcrete Limestone Mechanical performance Plastic Sustainability Waste recyclingmechanical performanceRenewable energy sourcesEnvironmental sciencesSettore ICAR/09 - Tecnica Delle Costruzioniplasticwaste recyclingconcreteGE1-350Sustainable constructionlimestone
researchProduct

A novel approach to enhance mechanical properties during recycling of aluminum alloy scrap through friction stir consolidation

2021

Solid state recycling (SSR) is a new approach for making metals recycling more efficient with respect to remelting-based approaches. Friction stir consolidation (FSC) is a new solid-state process that is employed to recycle metallic scraps. Until now, a single-step FSC process was applied to recycled metal chips. During the single-step approach, critical processes parameters, especially processing time and rotational speed, are considered vital to control the quality and mechanical properties of the billet. However, the effectiveness of process parameters is highly restricted by challenging masses of recycling chips and machine competency. The present study first highlights the issues of th…

Control and Systems EngineeringMechanical EngineeringMulti-step approachesFriction stir consolidationRecycling aluminum chipsIndustrial and Manufacturing EngineeringSoftwareSolid state recyclingComputer Science Applications
researchProduct